Creating and sharing knowledge for telecommunications

Electrical imaging map on MPCVD diamond diodes and structural relationship obtained by micro-Raman

Mendes, J. C. ; Pereira, L.P.

Advanced Materials Vol. 514-516, Nº --, pp. 48 - 52, May, 2006.

ISSN (print): 0935-9648
ISSN (online): 1521-4095

Scimago Journal Ranking: 6,15 (in 2006)

Digital Object Identifier: 10.4028/www.scientific.net/MSF.514-516.48

Abstract
In this work we present an equipotential surface map with a resolution higher than 100 nm, resulting from conductive atomic force microscopy (AFM). The images, obtained in polycrystalline MPCVD (Microwave Plasma Assisted Chemical Vapor Deposition) diamond devices, are clearly structure dependent. Diamond and non-diamond phases were identified by micro-Raman spectroscopy and correlated with the electrical conduction map. The application of the non-homogeneous contact theory lead to the extraction of two Schottky Barrier Heights (SBH), one close to 0.6 V with dispersion ~ 0.1 V, attributed to the diamond / metal interface, and the other close to 0.4 V with dispersion ~ 0.04 V, due to the non-diamond phases / metal interface. The diamond / non-diamond phase ratio is about 85:15, taken from the micro-Raman spectra. Combining these results with the electrical conduction map, a general model to predict the macroscopic electrical behavior of polycrystalline diamond based devices is proposed.