A novel portable anechoic chamber using ultra-thin 2D microwave absorber for industrial 5.0
Baghel, A.
;
Chaves, H. C.
; Oliveira, V.
;
Pinho, P.
;
Carvalho, N.B.C.
Scientific Reports Vol. 14, Nº 1, pp. 1 - 15, March, 2024.
ISSN (print):
ISSN (online): 2045-2322
Scimago Journal Ranking: 0,90 (in 2023)
Digital Object Identifier: 10.1038/s41598-024-55595-4
Download Full text PDF ( 4 MBs)
Downloaded 3 times
Abstract
In this paper, the authors, for the first time, have shown the use of 2D conformal microwave absorbing material (MAM) in the design and fabrication of a portable Anechoic chamber (AC). The MAM is fabricated on the transparent and conductive metal oxide layer named indium-tin-oxide (ITO) with Polyethylene terephthalate as the substrate and the ground plane for zero transmission having overall thickness of 0.012 where is calculated at 0.7 GHz. The MAM is characterized for 0.7 to 18 GHz for both TE- and TM-polarisation and oblique incidence. High sheet resistance, dipole-like resonance structure patterned on the ITO, and the air-spacing between the layers is optimized to achieve broadband absorption. The MAM is used to line the six sides of the rectangular anechoic chamber having inner dimensions of: (L × W × H: 850 × 650 × 720 mm3). The return loss (RL), gain, and radiation pattern of three antenna working at 1.56, 2.43, and 4.93 GHz are analyzed inside the AC. The measurement results for all frequencies very well match with the simulation studies, thus validating and opening the door for the future use of ultra-thin and planar MAM in the AC.