Creating and sharing knowledge for telecommunications

Multi-Carrier 5G-Compliant DML-Based Transmission Enhanced by Bit and Power Loading

Fernandes, M. ; Loureiro, Pedro A. Loureiro ; Brandão, B. ; Lorences-Riesgo, A. ; Guiomar, F. P. ; Monteiro, P.

IEEE Photonics Technology Letters Vol. 32, Nº 12, pp. 737 - 740, June, 2020.

ISSN (print): 1041-1135
ISSN (online): 1041-1135

Scimago Journal Ranking: 0,81 (in 2020)

Digital Object Identifier: 10.1109/LPT.2020.2994045

Download Full text PDF ( 1 MB)

Downloaded 2 times

Abstract
The introduction of 5G enhanced mobile broadband (eMBB) services has brought unprecedented bit-rate demands to the optical transport infrastructure, which can hardly be supported through cost-effective digital fronthauling solutions. This opens up a whole new opportunity for bandwidth-efficient radio-over-fiber (RoF) analog fronthaul transmission, which avoids the well-known bandwidth multiplication issue associated with the digitization of radio signals. Using a low-cost directly modulated laser (DML) with less than 3 GHz bandwidth and a
standard PIN photodetector, we demonstrate the transmission of a carrier-aggregated 5G downlink signal over up to 25 km of single-mode fiber (SMF). Resorting to the use of intermediate frequency-over-fiber (IFoF), we enable the transmission of 5G-compatible signals composed of up to 12 aggregated 400 MHz component carriers (CCs), resulting in a total radio bandwidth of 4.8 GHz, corresponding to >300 Gbps CPRI-equivalent downlink data-rate. 5G-compliant EVM performance across all CCs is achieved through the optimization of power and bit loading between component carriers, enabling an aggregated end user data-rate of 15.6 Gbps.