Creating and sharing knowledge for telecommunications

Unsupervised Hyperspectral Signal Subspace Identification

Nascimento, J. ; Bioucas-Dias, J.

Unsupervised Hyperspectral Signal Subspace Identification, Proc Conf. on Telecommunications - ConfTele, Santa Maria da Feira, Portugal, Vol. 1, pp. 441 - 444, May, 2009.

Digital Object Identifier:

Abstract
Hyperspectral imaging sensors provide image data
containing both spectral and spatial information from the Earth surface. The huge data volumes produced by these sensors put stringent requirements on communications, storage, and processing.
This paper presents a method, termed hyperspectral signal subspace identification by minimum error (HySime), that infer the signal subspace and determines its dimensionality without any prior knowledge. The identification of this subspace enables a correct dimensionality reduction yielding gains in algorithm
performance and complexity and in data storage. HySime method is unsupervised and fully-automatic, i.e., it does not depend on any tuning parameters. The effectiveness of the proposed method is illustrated using simulated data based on U.S.G.S. laboratory spectra and real hyperspectral data collected by the AVIRIS sensor over Cuprite, Nevada.