Creating and sharing knowledge for telecommunications

Perfect Periodic Sequences with Low PAPR

Pereira, J. ; Ferreira, M. P. M. F. ; Gasparovic, M.G. ; Manjunath, G. ; Mendes, S. P. M.

Perfect Periodic Sequences with Low PAPR, Proc Conf. on Telecommunications - ConfTele, Leiria, Portugal, Vol. , pp. - , February, 2021.

Digital Object Identifier:

Download Full text PDF ( 812 KBs)

Abstract
Different coding sequences have huge effects on the performance of Code Division Multiple Access and Orthogonal Frequency Division Multiple Access communication systems. We propose new perfect sequences, derived from an Inverse Discrete Fourier Transform of Golay codes, and present both a mathematical and hardware-based direct/inverse generator for these new sequences. Our analysis reveals that these new sequences, named Orthogonal Perfect DFT Golay (OPDG) codes, have better autocorrelation and cross-correlation properties than the Golay codes. High Peak-to-Average Power Ratio (PAPR) is identified as one of the main practical problems involving Orthogonal Frequency Division Multiple Access power transmission. To minimize this problem, we introduce a bipolar decomposition of our new perfect sequences that permit the lowest PAPR (equal to 1) for each of the new bipolar codes. Additionally, this paper shows that the new bipolar codes derived from OPDG sequences outperform orthogonal Gold codes regarding error transmission probabilities.