Creating and sharing knowledge for telecommunications

Supramolecular Structures built by scanning tunneling microscopy

Ferreira, Q.

Supramolecular Structures built by scanning tunneling microscopy, Proc European Materials Research Society (E-MRS) - Fall Meeting EMRS Fall, Warsaw, Poland, Vol. , pp. - , September, 2018.

Digital Object Identifier:

Abstract
Scanning tunnelling microscopy (STM) is the elected technique by the scientists to visualize and manipulate matter at molecular/atomic scale. Namely, has been used to monitor in real-time the formation of self-assembled monolayers highly organized in which the molecules arrange themselves into packed 2D crystals and fully covering the surface[1,2]. Several high resolution STM images about self-assembly molecular systems formation have been reported revealing the parameters which are involved in the monolayers formation whether they are physical parameters (e.g. concentration of solutes, wettability, contact angles, superficial tension, temperature variations) or chemical parameters (e.g. molecule structure, orbital configuration). Recently, the STM has been used to build molecular systems with multicomponents, e.g., self-assembled monolayers with more than one molecular element, vertical supramolecular structures synthetized in-situ[3,4] and/or molecular switches[2]. This work reviews the methodology which is involved in the development of these systems revealing details on how to use the STM to monitor their fabrication[5].