Creating and sharing knowledge for telecommunications

A Roadside and Cloud-Based Vehicular Communications Framework for the Provision of C-ITS Services

Vieira, E. ; Almeida, J. ; Ferreira, J. ; Dias, T. ; Silva, A. V. S. ; Moura, L.

Information (Switzerland) Vol. 14, Nº 3, pp. 153 - 153, March, 2023.

ISSN (print): 2078-2489
ISSN (online):

Scimago Journal Ranking: 0,66 (in 2022)

Digital Object Identifier: 10.3390/info14030153

Road infrastructure plays a critical role in the support and development of the Cooperative Intelligent Transport Systems (C-ITS) paradigm. Roadside Units (RSUs), equipped with vehicular communication capabilities, traffic radars, cameras, and other sensors, can provide a multitude of vehicular services and enhance the cooperative perception of vehicles on the road, leading to increased road safety and traffic efficiency. Moreover, the central C-ITS system responsible for overseeing the road traffic and infrastructure, such as the RSUs, needs an efficient way of collecting and disseminating important information to road users. Warnings of accidents or other dangers, and other types of vehicular services such as Electronic Toll Collection (ETC), are examples of the types of information that the central C-ITS system is responsible for disseminating. To remedy these issues, we present the design of an implemented roadside and cloud architecture for the support of C-ITS services. With the main objectives of managing Vehicle-to-Everything (V2X) communication units and network messages of a public authority or motorway operator acting as a central C-ITS system, the proposed architecture was developed for different mobility testbeds in Portugal, under the scope of the STEROID research project and the pan-European Connected Roads (C-Roads) initiative. RSUs, equipped with ETSI ITS-G5 communications, are deployed with a cellular link or fiber optics connection for remote control and configuration. These are connected to a cloud Message Queuing Telemetry Transport (MQTT) broker where communication is based on a geographical tiling scheme, which allows the selection of the appropriate coverage areas for the dissemination of C-ITS messages. The architecture is deployed in the field, on several Portuguese motorways, where road traffic and infrastructure are monitored through a C-ITS platform with visualization and event reporting capabilities. The provided architecture is independent of the underlying communication technology and can be easily adapted in the future to support Cellular-V2X (PC5 interface) or 5G RSUs. Performance results of the deployed architecture are provided.