Creating and sharing knowledge for telecommunications

Flying Mobile Edge Computing towards 5G and beyond: An Overview on current use cases and challenges

Cumino, P. C. ; Sargento, S.

Flying Mobile Edge Computing towards 5G and beyond: An Overview on current use cases and challenges, Proc 12th IEEE/IET International Symposium on Communication Systems, Networks and Digital Signal Processing CSNDSP, Porto, Portugal, Vol. 1, pp. 1 - 5, July, 2020.

Digital Object Identifier:

Download Full text PDF ( 1 MB)


The increasing computational capacity of multiple devices, the advent of complex applications, and data generation create new challenges of scalability, ubiquity, and seamless services to meet the most diverse network demands and requirements, such as reliability, latency, battery lifetime. For this reason, the 5th Generation (5G) network comes to mitigate the most diverse challenges inherent to the current dynamic mobile networks and their increasing data rates. Unmanned Aerial Vehicles (UAVs) have also been considered as communication relays or mobile base stations to assist mobile users with limited or no available wireless infrastructure. They can provide connections for mobile users in hard-to-reach areas, replacing damaged or overloaded ground infrastructure and working as mobile clouds, providing low but increasing computational power. However, the feasibility of a Flying Edge Computing requires special attention in terms of resource allocation techniques, cooperation with existing ground units and among multiple UAVs, coordination with user mobility, computation efficiency, collision avoidance, and recharging approaches. Thus, the cooperation among UAVs and the current terrestrial Mobile Edge Computing can be relevant in some cases once the computation power of a single UAV might be insufficient. It is important to understand the feasibility of current proposals and establish new approaches that consider the usage of multiple UAVs and recharging approaches. In this paper we discuss the challenges of a 5G extended network through the help of UAVs. The proposed multi-tier architecture employs UAVs with different mobility models, providing support to ground nodes. Moreover, the support of the UAVs as edge nodes will also be evaluated.