Creating and sharing knowledge for telecommunications

IT study says that current COTS RF don´t measure up to 5G requirements

on 27-11-2018

... In a interview recently published by the IEEE Spectrum, Rafael Caldeirinha adresses the main conclusions of the study “Will COTS RF Front-Ends really cope with 5G requirements at mmWave?”. Co-authored by researchers from the Antennas and Propagation Group of IT and the Polytechnic Institute of Leiria, the University of Vigo and the University of South Wales, the study was published back in June, in the IEEE Access. Around the same time the 3GPP published the Release 15 of the 5G New Radio Specifications, which informed the equipment manufacturers about the standards network gear must meet to enable 5G networks.

In this study IT researchers looked at the equipment available at the time, to see if they measured up to the demands of 5G networks. The research team was particularly interested in assessing the capabilities of commercial-of-the-shelf (COTS) radio frequency (RF) equipment. In the tests that were runned, millimetre wave (mmWave) RF front ends did not measure up. As Rafael Caldeirinha explained during the interview, “It has been showed that currently COTS RF front ends do not yet cope fully with 5G requirements.

According to Rafael Caldeirinha this work was carried out while the 5G New Radio specifications were still being considered. As the article refers “Since then manufacturers and vendors have announced varied test and measurement equipment for both signal generation and analysis.”

To read the full article go to:

IT in two projects that will build the quantum internet of the future

on 22-11-2018

... IT has won two projects within the European Union Quantum Flagship Programme. Launched by the European Commission in 2018, this program has a budget of €1 billion for the next 10 years and aims to make the EU a world leader in the development of these new emerging and disruptive information technologies. In the 2018 competition, 20 projects were selected out of 140 applications.

IT is involved in the Quantum Internet Alliance project, in which the aim is to build the first prototype of the future quantum Internet within the next three years, a network that can enable long-distance private communications as well as network quantum computers and quantum sensor systems. Yasser Omar (IT/IST) and Francisco Monteiro (IT/ISCTE-IUL) will be working on this €10 million project together with Technical University of Delft, the Max-Planck-Institut for Quantum Optics in Munich, the Niels Bohr Institute in Copenhagen, the Austrian Academy of Sciences, among others.

IT is also involved the project Quantum Microwave Communication and Sensing. Yasser Omar, José Leitão and Carlos Fernandes (all from IT/IST) will work together with Walther-Meissner-Institut de Munique, the Ecole Normale Supérieure de Lyon and the Oxford Instruments, among others. This is a critical research project, with a total budget of €3 million, which will use superconducting circuits, operating near absolute zero temperature, to generate interleaved microwaves. Interleaving is a purely quantum phenomenon, which allows one to obtain information from a system without communicating or interacting with it. This phenomenon, predicted by the laws of quantum theory, is so surprising that it led Einstein to consider that quantum theory could not be correct. However, quantum interleaving is a fact, and recent laboratory experiments prove that Einstein's perspective was wrong. The study of this phenomenon could lead to important applications such as quantum radars, much more sensitive than current radars.