Creating and sharing knowledge for telecommunications

SEMINAR SERIES on ICTs POLICY RESEARCH


on 30-06-2008

... Speaker: Eric P. Xing
Statistical Network Analysis and Inference: Methods
and Applications
Abstract:
Exploring the statistical properties and hidden characteristics of network entities, and the stochastic processes behind temporal evolution of network topologies, are essential for computational knowledge discovery and prediction based on
network data from biology, social sciences and various other fields. In this talk, I first discuss a hierarchical Bayesian framework that combines the mixed membership model and the stochastic blockmodel for inferring latent multi©\facet roles
of nodes in networks, and for estimating stochastic relationships (i.e., cooperativeness or antagonisms) between roles. Then I discuss a new formalism for modeling network evolution over time based on temporal exponential random graphs, and a
MCMC algorithm for posterior inference of the latent time©\specific networks. The proposed methodology makes it possible to reverse©\engineer the latent sequence of temporally rewiring networks given longitudinal measurements of node attributes, such as intensities of gene expressions or social metrics of actors, even when a single snapshot of such
measurement resulted from each (time©\specific) network is available.
Bio:
Eric Xing is an assistant professor in the Machine Learning Department, the Language Technology Institute, and the Computer Science Department within the School of Computer Science at Carnegie Mellon University. His principal research interests lie
in the development of machine learning and statistical methodology; especially for building quantitative models and predictive understandings of the evolutionary mechanism, regulatory circuitry, and developmental processes of biological systems; and for building computational intelligence systems involving automated learning, reasoning, and decision©\making in open, evolving possible worlds. Professor Xing received his B.S. in Physics from Tsinghua University, his first Ph.D. in Molecular
Biology and Biochemistry from Rutgers University, and then his second Ph.D. in Computer Science from UC Berkeley. He has been a member of the faculty at CMU since 2004, and his current work involves,
1) graphical models, Bayesian methodologies,
inference algorithms, and optimization techniques for analyzing and mining high©\dimensional, longitudinal, and relational data; 2) computational and comparative genomic analysis of biological sequences, systems biology investigation of gene regulation, and statistical analysis of genetic variation, demography and disease linkage; and 3) application of statistical learning in social networks, text/image mining, vision, and machine translation. He is a recipient of the NSF Career Award, and
the Sloan Research Fellowship in Computer Science.
Monday, June 30th 2008, 14:00 pm
Torre Norte, EA3, Instituto Superior T¨¦cnico More Information..

CICLO DE P A L E S T RA S - FISICA QUÂNTICA AO FIM DA TARDE


on 24-06-2008

... Doutor Yasser Omar - PALESTRA 2
“APLICAÇÕES DA FÍSICA QUÂNTICA ÀS CIÊNCIAS DA INFORMAÇÃO”
Na segunda Palestra mostrar-se-á como, na última década, se descobriu uma forma
de tirar partido destas propriedades para codificar informação de uma nova maneira e
desenvolver aplicações revolucionárias, como teletransportar estados quânticos,
estabelecer comunicações à prova de escutas e obter computadores muito mais
rápidos que os actuais (mas para já limitados a meia dúzia de bits quânticos!),
descobertas que estão na origem de uma nova área da ciência: a Teoria da
Informação Quântica.

2 4 DE JUNHO – 1 8H3 0 (SA L A SAND E L EMOS )

ORDEM DOS ENGENHEIROS / ACADEMIA DE ENGENHARIA
Av. Sidónio Pais, 4–E – Lisboa
Tel. 21 313 26 13 - Fax: 21 313 26 15 – E-mail: tafonseca@ordemdosengenheiros.pt More Information..